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Abstract— Computing combined circuits and shortest cyclic paths between two given nodes in undirected graphs is a fundamental 
operation over graphs. While a number of techniques exist for answering computing circuits and approximating node distances efficiently in 
directed graphs, but the actual circuit calculations, their generations and shortest cyclic paths in undirected graphs are often neglected. 
However, it is often essential to find out all combined circuits and shortest cyclic paths between two given nodes in an undirected graphs. 
In this paper, we have addressed this problem and presented an optimistic algorithm that not only supports calculation of circuits but also 
generates combined circuits and computes corresponding shortest cyclic paths in undirected graphs. This algorithm is also applicable to 
directed graphs as well. 

Index Terms— Algorithm, Graph Theory, Shortest Cyclic Paths, Combined Circuits, Explored Graphs (Tree based). 

——————————      —————————— 

1 INTRODUCTION 
graph G is defined as a set of two tuples that is G= (V, E), 
where V represents set of vertices of G and E represents 
the set of edges of G. There exists a mapping from the set 

of edges to a set of pairs of elements of V. An edge is denoted 
by the (unordered) pair of its endpoints. Each edge e of a 
graph is weighted or un-weighted with a real number w (e), 
which extends to a weight function on all sets of edges. 
Weights are allowed to be negative, but the weight of a simple 
circuit (a connected sub-graph which is regular of degree 2) 
cannot be allowed to be negative, as in the shortest path 
problem.  

A path in a graph is a sequence of edges which connect a 
sequence of vertices and a cycle/circuit is a path such that the 
start vertex and end vertex are the same. Cyclic paths or 
circuits in a graph is a graph that contains n number of edges 
and vertices in a closed chain where the no. of edges in circuits 
is equal to the no. of vertices with degree 2, that is every 
vertex has exactly two edges incident with it. A path is 
elementary if no vertex appears twice. A circuit is elementary 
if no vertex but the first and last appears twice. Two 
elementary circuits are distinct if one is not a cyclic 
permutation of the other. There are c distinct elementary 
circuits in G. Hamiltonian cycle, Hamiltonian circuits is a cycle 
that visits each vertex exactly once (except for the vertex that 
is both the start and end, which is visited twice). A graph that 

contains a Hamiltonian cycle is called a Hamiltonian graph. A 
Hamiltonian decomposition is  
an edge decomposition of a graph into Hamiltonian circuits. 
For example, a complete graph with more than two vertices is 
Hamiltonian.  

Therefore every cycle graph is Hamiltonian and every 
circuit or Hamiltonian cycle can be converted into path by 
removing one of its edges but a Hamiltonian path can be 
extended to Hamiltonian circuit only if its endpoints are 
adjacent [5], [6]. 

2 OBJECTIVES 
Broadly speaking, there are two enumeration problems on 

sets of objects. The one, which we call counting, is determining 
how many objects there are in the set. The other, which we call 
finding, is the construction of every object in the set exactly 
once. Indeed, objects may always be counted by finding them 
if a method to do so is at hand. But knowing the count is 
usually of little aid in finding the objects. 

The objective is to find the total number of combined 
elementary circuits, their formation and shortest cyclic paths 
of an undirected/directed graph which could be faster than 
the algorithms previously known. Specific counting problems 
are, of course, solved. For example, there are exactly 

 
 

 
elementary circuits in a complete directed graph with n 
vertices. Thus the number of elementary circuits in a directed 
graph can grow faster with n than the exponential 2n, so in the 
complete undirected graph. Therefore it is clear that our aim is 
to reduce the total no. of Circuits formed in a graph whether 
directed or undirected with n vertices, e edges and c 
elementary circuits by some integer number ‘k’ which will be 
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feasible for a substantially larger class of problems than the 
best algorithms previously known [1], [2], [3], [4], realizes a 
time bound of O((n + e)(c + 1)),O(n. e(c + 1)),O(e3 v), etc. and 
are applicable only to directed graph. 

Once the combined circuits have been developed, the next 
aim is to compute the cyclic paths in such a way which will 
lead to the shortest cyclic paths in the graph. 

3 LITERATURE REVIEW  
The literature contains several algorithms which find the 

elementary circuits of any direct graph. In the algorithms of 
Tiernan [7] and of Weinblatt [8], time exponential in the size of 
the graph may elapse between the output of one circuit and 
the next [2]. Tarjan [2] presents a variation of Tiernan's 
algorithm in which at most O(n . e) time elapses between the 
output of any two circuits in sequence, giving a bound of 0(n . 
e(c + 1)) for the running time of the algorithm on an entire 
graph in the worst case. Ehrenfeucht, Fosdick, and Osterweil 
[3] give a similar algorithm which realizes the same bound. In 
the case of Tarjan's algorithm, the worst-case time bound is 
realized. We assume that the algorithm begins with vertex 1 
and, in any search from vertices 1 through k + 1, it visits 
vertices k + 2 through 2k + 1 before a first visit to vertex 2k + 
2. In the course of finding each of the k elementary circuits 
which contain vertex 1, the subgraph on vertices 2k + 2 
through 3k + 3 will be explored k times, once for each of the 
vertices k + 2 through 2k + 1. Thus exploration from vertex 1 
alone consumes 0(k3) time. Since there are exactly 3k 
elementary circuits in the entire graph, the running time is at 
least O(n . e(c + 1)). Johnson[1] presented an algorithm, which 
finds all the elementary circuits of a directed graph in time 
bounded by O((n + e)(c + 1)) and space bounded by O(n + e), 
where there are n vertices, e edges and c elementary circuits in 
the graph. The algorithm resembles algorithms by Tiernan and 
Tarjan, but is faster because it considers each edge at most 
twice between any one circuit and the next in the output 
sequence. 

To find the basis of the cycle space of a graph with 
minimum total weights, Steeves [9] and Cribb, Ringeisen and 
Shier[10] may have some uses in Surveying and algorithms 
have been developed in [9] and [11]. Hubicka and Syslo [11] 
conjectured that their algorithm works, but Kolasinska has 
recently constructed a counterexample [12]. Steeves in [9] 
developed an algorithm that takes 0(e v2) operations, but 
counterexamples have also been found for it as well.A second 
use for minimum cycle bases may be to improve algorithms 
that list all simple circuits in a graph. One early reference and 
one recent reference for this type of algorithm are [13] and 
[14]. Dixon and Goodman use a similar technique to search for 
the longest cycle in a graph [15]. Horton [4] gave an algorithm 
that solves the above problem in O (e3 v) operations. 

4 PROPOSED RESEARCH WORK  
With the basic background covered under the above, the 

need of such algorithm is required that can be used as a quick 
trick to produce combined elementary circuits and shortest 
cyclic paths in a graph. Although there are many algorithms 

available but they require sophisticated computing. Therefore 
the proposed research work attempts to reduce such 
sophisticated computing and this will be done by developing 
an optimistic algorithm to calculate and generate combined 
elementary circuits and shortest cyclic paths in any graph. The 
proposed algorithm reduces ‘k’ number of combined circuits 
from the total number of circuits formed in a graph which also 
leads to save nearly ‘t/2’ time (i.e., if ‘t’ is total time to 
calculate circuits). Circuit calculation method will help us in 
finding the shortest cyclic paths by considering weighted 
graphs. The proposed research work done this by finding the 
appropriate circuit, compute their weights and compare with 
each other, the lowest will be the shortest path or shortest 
cyclic path of the graph. Through Circuits, the proposed 
research work can show the robustness, performance, etc. of 
the network architecture. We can also show the maximum and 
minimum cycle length. In cyclic paths or circuits, the choice of 
the start vertex is arbitrary, therefore every node/vertex can 
be shown as a full duplex node or in other words, works 
under the client server architecture which means any vertex 
can receive any data from any other vertex or sends to any 
other vertex contains within the cycle. The proposed work also 
helps us in finding other different cycles by interchanging the 
vertices, for example to find the circuit for ‘x’ vertex, then 
swap each ‘x’ vertex with the each ‘y’ vertex (where let ‘y’ 
being the root/start vertex or the source/ destination vertex ) 
in the proposed work. The proposed work also finds the total 
number of circuits formed in a graph. 

5 ALGORITHM DESCRIPTION 
In this section we explain our algorithm for finding graph 

circuits and shortest cyclic paths for undirected graphs in 
detail. The algorithm presented in this paper in turn can be 
applied to directed graphs as well. Let G={V,E} be a complete 
undirected graph as shown in Fig. 1,  where V is the set of 
vertices {0,1,2,3} and E is the set of edges. In this case V=4 and 
E=10. P= x1e1x2e2…xn for xi Є V (G), ei Є E (G), 1 ≤ i ≤ n, is 
called a path of G if all vertices xi in P are distinct, and x1 is 
called origin vertex, xn is called the terminus vertex. A cycle is 
defined as a path except that x1=xn.  Circuits with only one 
edge is not considered to be a circuit in this paper.  Fig. 2 is the 
exploration of complete undirected graph (Fig. 1) includes 
node number and level number. Exploration of graphs can be 
done by considering any node as the source or initial node and 
follow the following rules as mentioned in the given below 
algorithm.  

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Fig. 1. Complete undirected graph 
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Once the exploration is done, next is to generate the circuits  

which can be calculated as well. This way we can generate and 
calculate the combined circuits which in turn can be used to 
generate and calculate the other circuits by simply exchanging 
the nodes. Once all circuits are formed, we can find out the 
shortest cyclic paths of weighted graphs. Therefore the 
shortest cyclic path of length ‘l’ with weighs ‘wi’ from u to u, 
denoted by dist(u, u), is the minimum summation of 
edges/weights or zero if not u Є V (G): 

 
 

(1)  
 
 

Following is the algorithm which helps us in exploring any 
graph (directed or undirected) into tree based, generation of 
combined circuits, calculation of circuits and shortest cyclic 
paths. 

Algorithm: 

Step 1. Begin 

Step 2. Explore graph into tree based from left to right in such 
a way that the descents should not be repeated in a 
particular path. Exploration is done on the basis of 
existed communications in the graph. 

Step 3. The parent node i is at level i-1 while as the leaf node 
is at level n-1, where 1 ≤ i ≤ n-1. 

Step 4. To form circuits of length j where j ≤ n , traverse the 
path of descents from source node i at level i-1 to the 
nodes at level j-1 from right to left fashion and goto 
Step 5 & 6 until reach to the last left sibling node. This 
comparison continues until no ancestor sibling node 
on the left side. 

Step 5. Compare every child node (terminal node) at level j-1 
with the left sided sibling nodes of the ancestor node 
at level i. 

Step 6. If a match found, store/display the path/circuit else 

choose next path and repeat step 3. 

Step 7. End. 

Step 8. Exit. 

Using the above algorithm, Fig. 2 can be constructed 
from Fig. 1. Therefore according to the above algorithm, 
resulted combined circuits can be constructed as shown in 
table 1. 

From the above table it is clear that the minimum length is 
2 and the maximum length of the combined circuit for vertex 
‘0’ is 4. The total number of combined circuits for vertex ‘0’ is 
9, therefore the total number of combined circuits for four 
vertices is equal to 36. 

The comparisons between the vertices of the explored 
graph can be better understand with the help of Fig. 3 and Fig. 
4 is the explored graph of Fig. 3. 

Also we have derived some useful lemmas by studying the 
topological properties of the explored graph are as under: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 1 
COMBINED CIRCUITS FOR VERTEX ‘0’ 

 

 
Fig. 2. Exploration of Fig. 1 into a tree. 

 
Fig. 3. Complete undirected graph with three vertices. 

 
Fig. 4. Explored graph of Fig. 3. 
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Lemma 1. Explored graph can have (n-1) levels only. 
Proof. Let ni be the total number of nodes/vertices in the graph. 

The source node or the parent node of the explored graph 
(tree) is at 0th level. Therefore the last node or the leaf node 
in a combined circuit can be at (n-1)th level which is the last 
level of the explored graph.  

Lemma 2. Total number of combined circuits at level i where 
0<i<n, is equal to some ‘y’ number of matches found in explored 
graph. 

Proof. Let ‘x’ be the total number of matches found in the 
explored graph at level ‘li’ , 0 < i < n. Then their exists some 
‘y’ comparisons that constitutes combined circuits. Hence the 
total number of combined circuits at level ‘li’ that leads to 
constitute combined circuits is ‘y’. 

Lemma 3. Total number of combined circuits in explored graph is 
equal to the  

 

Proof. Using Lemma 2, it is clear that there are ‘y’ number of 
combined circuits at level ‘li’, where 0 < i < n. since the total 
number of level are (n-1). 

Therefore, total number of combined circuits for n vertices is  
 

 

Lemma 4. The shortest cyclic path (dist(u,u)) from u to u of length 
‘l’, 
weig
ht 
‘wi’ 
is: 

 

 
 

Proof.  Let xi where 0 < i ≤ n be the weight / distance of 
weighted graph and let wi where 0 < i ≤ n be the weights of 
their combined circuits. Therefore the shortest cyclic path 
dist(u,u) from u to u is the minimum weight of length li 
whe
re 0 
<i ≤ 
n, 
i.e,   

 

 

Lemma 5. ‘t/2’ time is saved in the above proposed algorithm as 

compared to the previously known algorithms. 
Proof. Let ‘t’ is the total time consumed for calculating circuits 

using  combination permutation technique and which can be 
calculated as nCr = 𝒏!

(𝒏−𝒓)!𝒓!
  where ‘n’ is the number of nodes 

or  
 vertices and ‘r’ is the length of the circuit. Let n=4 and r=4, 

then, 
nCr = 𝟒!

(𝟒−𝟒)!𝟒!
 = Infinity  

i.e., infinity time is used while as in the above algorithm it is 
only 12 circuits as shown in Fig.2. 

Lemma 6. The maximum length of the combined circuit is ‘n’. 
Proof. Since there is no repetition of vertices or nodes from u to 

u, therefore the maximum length of the combined circuit is 
‘n’ as there are ‘n’ number of vertices in the graph.  

Lemma 7. The minimum length of the combined circuit is 2 for n 
>1. 
Proof. Since each Ui is connected to each Vi in an undirected 

complete graph, 0 < i ≤ n, then there is a direct path from Ui 
to Vi and from Vi to Ui. As circuits of length one is not 
considered in this paper, therefore the minimum length of 
the combined circuit is 2 for n > 1 

6 CONCLUSION 
In this paper we have presented an optimistic algorithm 

for generating and calculating combined circuits of the 
undirected graphs. The algorithm in this paper can be applied 
to any kind of graph or topological network. The fundamental 
task over graphs is to find out the accurate shortest cyclic path 
from Ui to Ui of length li, 0 < i ≤ n and n > 1, is also presented 
in this paper. Formation of combined circuits shows the 
robustness and performance of the network. The more 
combined circuits, the more robust is the network and hence 
performance. The proposed algorithm in this paper doesn’t 
produce repetitive combined circuits when used for directed 
or undirected graphs and hence saves much of the time. As 
such we have studied topological properties of the explored 
graph and developed some very useful lemmas. We hope that 
these lemmas will be our guidelines for the further study in 
the field of computer science. We have also shown the 
maximum and the minimum length of the combined circuits 
through these lemmas. 
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